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Some previously accepted results for the form of one- and two-particle Langrangian 
turbulence statistics within the inertial subrange are corrected and reinterpreted 
using dimensional methods and kinematic constraints. These results have a 
fundamental bearing on the statistical theory of turbulent dispersion. 

One-particle statistics are analysed in an inertial frame 9' moving with constant 
velocity (which is different for different realizations) equal to the velocity of the 
particle a t  the time of labelling. It is shown that the inertial-subrange form of the 
Lagrangian acceleration correlation traditionally derived from dimensional argu- 
ments constrained by the property of stationarity, U$%/7, where %'g) is a universal 
constant, F is the mean rate of dissipation of turbulence kinetic energy and 7 is the 
time lag, is kinematically inconsistent with the corresponding velocity statistics 
unless %?r) = 0. On the other hand, velocity and displacement correlations in the 
inertial subrange are non-trivial and the traditional results are confirmed by the 
present analysis. Remarkably, the universal constant V0 which characterizes these 
latter statistics in the inertial subrange is shown to be entirely prescribed by the 
inner (dissipation scale) acceleration covariance ; i.e. there is no contribution to 
velocity and displacement statistics from inertial-subrange acceleration structure, 
but rather there is an accumulation of small-scale effects. 

In the two-particle case the (cross) acceleration covariance is deduced from 
dimensional arguments to be of the form G;'9 , ( t l / t z )  in the inertial subrange. In 
contrast to the one-particle case this is non-trivial since the two-particle acceleration 
covariance is non-stationary and there is therefore no condition which constraints W, 
to a form which is kinematically inconsistent with the corresponding velocity and 
displacement statistics. Consequently it is possible for two-particle inertial-subrange 
acceleration structure to make a non-negligible contribution to relative velocity and 
dispersion statistics. This is manifested through corrections to the universal constant 
appearing in these statistics, but does not otherwise affect inertial-subrange 
structure. Nevertheless, these corrections destroy the simple correspondence between 
relative- and one-particle statistics traditionally derived by assuming that two- 
particle acceleration correlations are negligible within the inertial subrange. 

A simple analytic expression which is proposed as an example of the form of 9, 
provides an excellent representation in the inertial subrange of Lagrangian stochastic 
simulations of relative velocity and displacement statistics. 
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1. Introduction 
The statistical basis for turbulent dispersion goes back to Taylor’s (1921) 

development of a kinematic relation between the dispersion of independent marked 
fluid particles and the Lagrangian velocity correlation function. Batchelor (1949) 
extended that result to three dimensions and developed the connection between 
single-particle dispersion in a fixed reference frame and the mean concentration field. 
Later, Batchelor (1950, 1952) identified the importance of two-particle statistics in 
describing the process of relative dispersion (i.e. the separation of particle pairs or the 
dispersion of a cloud of material relative to its centre-of-mass) and developed 
kinematic relations between particle-pair velocity statistics and the mean-square 
concentration field. He also showed how the set of hypotheses about the small-scale 
structure of turbulent motion which were introduced by Kolmogorov (1941) can be 
applied to relative dispersion in the so-called inertial subrange (see 52 for a brief 
outline of Kolmogorov’s theory). 

These similarity hypotheses also apply to the statistics of an ensemble of 
independent particles each of which is considered in an inertial frame Y which moves 
with constant velocity equal to the velocity of that particle at the time of labelling, 
say t = 0. There are great similarities between this conditional (on the initial 
velocity) one-particle motion and two-particle relative motion. However, in order to 
address the two, it is necessary to consider the nature of acceleration statistics. 
Novikov (1963) (see also Monin & Yaglom 1975, p. 546; Gifford 1982, 1983; Sawford 
1984) assumed that the two-particle acceleration covariance can be neglected 
(compared to the one-particle covariance) and so derived an equivalence between 
two-particle relative velocity and dispersion statistics and t,he corresponding 
conditional one-particle statistics. On the other hand, Thomson (1990) inferred from 
exact small-time expansions (see 54.1) and numerical calculations with a La- 
grangian stochastic model of two-particle motion that the two-particle acceleration 
covariance cannot be ignored and argued that this finding holds generally. 

Here we use exact kinematic relationships to explore the connection between the 
similarity forms for acceleration, velocity and displacement statistics. Although we 
are primarily interested in two-particle or relative statistics, we first present an 
analysis of one-particle acceleration statistics, showing how the direct application of 
Kolmogorov’s theory through dimensional analysis produces inertial-subrange 
results inconsistent with the kinematic relations between acceleration and velocity 
statistics, with the result that the leading-order term for the acceleration covariance 
in the inertial subrange must vanish. In fact the velocity inertial-subrange structure 
function is determined by the dissipation range of the acceleration. Most of the one- 
particle results are not new, but do not appear to be well known and in any case 
provide a useful parallel and contrast with the two-particle case. They additionally 
allow a rational consideration of the infinite-Reynolds-number limit and its 
connection with current stochastic models of dispersion. 

Because the relative acceleration of two particles is not stationary, the two- 
particle two-time acceleration covariance is not just a function of the lag but of both 
time variables and is therefore not fully constrained in the inertial range by the 
requirement of kinematic consistency with velocity statistics. There is therefore no 
reason to ignore the contribution of the two-particle acceleration covariance to the 
inertial-subrange velocity and displacement statistics. Indeed, we are able to make 
some deductions about the form of the two-particle acceleration covariance and to 
show that its contribution to these statistics in the inertial subrange is of the same 
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order as that of the one-particle acceleration covariance. We thus demonstrate that 
relative dispersion is more complicated than hitherto assumed and in particular that 
there is no simple connection between relative velocity and dispersion statistics and 
the corresponding conditioned one-particle statistics as proposed by Novikov (1963). 

2. Background and definitions 
2.1. Kolmogorov similarity theory 

Only the idealized problem dealing with homogeneous, isotropic and stationary 
turbulence will be considered. However, because of the rather general analysis which 
we undertake, significant emphasis falls on the small-scale and small-time behaviour. 
Thus, for the essentially local quantities in which we are interested these restrictions 
are not too severe, and are essentially encapsulated in Kolmogorov's (1941) concept 
of local isotropy. 

We follow the ideas developed by Kolmogorov (1941) in assuming that there is an 
equilibrium range of (small-scale) motion governed only by the viscosity of the fluid, 
v, and the mean rate of dissipation of turbulence kinetic energy, E. The velocity 
fluctuations at  any point can be characterized by the Eulerian root-mean-square 
velocity, (T, and a lengthscale, L,  which thus represent the energy-containing scales 
(or large scales) of motion. Empirically, it is found (Batchelor 1953, p. 103) that 
although dissipation is effected by viscosity a t  the smallest scales of motion, the 
dissipation rate is determined by the largest scales of motion. In particular, it is 
found that B M v 3 / L  ; here we choose to define the lengthscale as 

L = (T3/8 

t, = L/a. 

aL = ~ / g  = ( C / t L ) f .  

and a corresponding timescale as 

Accelerations associated with the energetic eddies are of order 

A second set of scales can be defined in terms of the governing parameters of the 
equilibrium range, C and v. These are 

I 'I = ( v y q ' ,  
t ,  = (v/& 
v7 = (vqi (=  (a,)", 
a, = (E3 /V) '  (=  (C / t , )J ) ,  

and are known as the Kolmogorov length, time, velocity and acceleration 
microscales respectively. They characterize those scales of motion at which viscosity 
converts turbulence kinetic energy into heat. This part of the equilibrium range is 
known as the dissipation subrange. 

Finally, there is a subrange of motions within the equilibrium range, but with 
scales so much larger than the dissipation scales that viscosity is not important there, 
which is characterized solely by c. This region is known as the inertial subrange, and 
is the focus of the present investigation. It involves times and lengths (or 
separations A )  such that t ,  < t < t ,  and 7 < A 6 L .  Refinements to Kolmogorov's 
ideas (Novikov & Stewart 1964 ; Frisch, Sulem & Nelkin 1978) are not warranted for 
the level of discussion here. 
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The turbulence Reynolds number, Re, based on the large scales is 

Re = uL/v (2.4) 
and here is taken to be very large, Re $- 1. In fact, we have in mind in this work the 
limit v -+ 0. The micro- and large scales are related through the Reynolds number by 

t ,  = Re-4 t,,  9 = Re-f L, v,, = Re-: u, a,, = Re: aL (2.5) 

2.2.  Lagrangian statistics and kinematic constraints 
To treat relative motions, particle-pair trajectories in each of an ensemble of 
turbulent flows must be considered. This means describing at time t the joint 
positions, x(l)(xkl), t )  and x(')(xk2), t )  and velocities, d l ) ( x f ) ,  t )  and dZ)(xg), t ) ,  for each 
particle (labelled one and two in parentheses) when given the initial positions, x f )  
and xp) respectively, at t = 0. The initial velocities are assumed to be an unbiased 
random sample of the turbulence. Therefore uf) and uc) are random variables which 
differ from realization to realization but are described by well-defined Eulerian 
statistics. The statistics describing the pair trajectories as functions of time and 
initial position are Lagrangian statistics. 

We focus on the following difference variables because these highlight dependence 
on local or small-scale structure of the turbulence. For velocity we define 

and likewise for particle two. The statistics of m ( l )  and t l ( l )  reflect the intrinsic nature 
of the small-scale turbulence within each flow and not the (large-scale) variability of 
velocity a t  xkl) between different flows in the ensemble. Batchelor (1952) indicates 
how to analyse the dispersion in terms of the difference variables. Similarly, the 
relative velocity and displacement variables, a@) and &), are defined as 

&) = ,(Z) - u(l )  

and ,# = ,(2) - ,#) 

with all subsequent pairwise relative variables denoted by superscript r in 
parenthesis. The physical separation of particles is d = X ( ~ ) - X ( ~ ) ,  

Our aim is to describe the statistics of the pairwise-relative variables as they 
develop in time. By definition, the differences all vanish initially but after sufficient 
time the root-mean-square velocity fluctuations become constant. Therefore, the 
difference statistics are clearly not stationary. Moreover, spatial symmetry requires 
that 

where (. . . ) denotes an ensemble average (at time t )  ; thus the first information of any 
consequence is contained in the covariances (the second moments). No higher-order 
statistics than these will be considered. For instance the two-time pairwise relative- 
velocity covariance is written as 

for some tensor W).  

placement covariance are 

(2.8) 

(2.9) 

(gJ1)) = (&)) = 0 and ( z ( 1 ) )  = (m")) = 0, (2.10) 

q ; ' ( t l ,  t z )  = (4%) ..j"(tz)) (2.11) 

Similarly, the pairwise relative-acceleration covariance and the relative-dis- 

R$)(t,, t * )  = ( @ ( t J  q ( t z ) )  (2.12) 
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and sgyt,, t 2 )  = ( @ ( t l )  Zjr)(tZ))' (2.13) 

Corresponding respective, one- and two-particle moments, D,(t,,  t z )  and D,,(t , ,  t z )  
etc., where subscript two denotes the two-particle form, are defined in an analogous 
way. For example 

Dir(tl, t 2 )  = (&)(tl) 4 ' ) ( t 2 ) )  and D2&, t 2 )  = ( 4 ' ) ( t l )  uj2Ytz)>. 
The one-particle statistics so defined, involve motion in an inertial frame 9' 

moving with the initial velocity of the particle (Monin & Yaglom 1975, p. 533). They 
are also sometimes referred to as conditional one-particle statistics (Smith 1968) 
because they are equivalent to those statistics obtained by sampling only those 
particles which are initially at  rest in a fixed reference frame. For simplicity, 
dependence on initial position has been omitted from (2.11)-(2.13). Actually, because 
of homogeneity, only the two-particle covariances depend on initial position, and 
then only on the separation of the pair, 

A ,  = xp - (1). 
XO 

To understand the structure of W )  it is helpful to consider the expanded form of 

(2.14) 

The first two terms are one-particle Statistics and the second two, two-particle 
statistics. Because of homogeneity, the one-particle statistics are independent of the 
initial positions and therefore the first two terms in (2.14) are equivalent. The two- 
particle statistics depend, however, upon do (if Idol were arbitrarily large little 
correlation between the particles would be expected) and by symmetry both two- 
particle terms in (2.14) are equivalent. Thus 

q c t , ,  t 2 )  = a , ( t l ,  t Z ) - - 2 0 2 i , ( t , ,  t 2 ) .  (2.15) 

Relative acceleration and displacement statistics can similarly be written in terms of 
one- and two-particle contributions. 

Consideration of the acceleration covariance is central to our task because, from 
the definition of the acceleration, 

the covariances. For example, 

= (&pap)  + (&yuy) - (@&p) - (upup). 

(2.16) 

There are equivalent expressions for the uncoupled one- and two-particle statistics. 
Moreover, analogous calculation of the displacement statistics is possible from the 
velocity covariance and, therefore, ultimately from the acceleration covariance. In 
particular, 

(2.17) 

The significance of two-time covariances is clear when the process is examined in this 
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way because the integrals, even when t ,  = t , ,  are calculated over the entire two-time 
domain (7,, 7,) E [0, t , ]  x [0, t , ] .  (As we shall show, the importance of two-time 
statistics is obscured when considering one-particle accelerations because of 
stationarity ; then only time differences (lags) are important.) 

3. One-particle statistics 
3.1. Kinematic constraints 

The conditions of stationarity and isotropy (a one-particle isotropic tensor being 
simply a scalar function multiplying the identity tensor ; thus D, = 08, etc.) enable 
the one-particle equation corresponding to  (2.16) to be expressed as 

and for the mean-square velocity increment with zero lag, 

D(t, t )  = 2 ( t - ~ ) R ( 7 ) d ~ .  s: 
The corresponding differential form of (3.2) is 

1 d2 
2 d7, 

R(7) = - -D(7 ,7 ) .  (3.3) 

It is the latter velocity-increment structure function for zero lag that is most often 
used (Monin & Yaglom 1975) to describe one-particle statistics and we shall proceed 
to write D(7,7)  as D(7).  

Equation (3.2) may be used to examine the kinematic consequences of various 
representations for R. The aim is to have a self-consistent asymptotic structure for 
the velocity covariance based on some asymptotic form for R. 

For large times such that t / t L +  co, (3.2) can be written 

2a2 = 2t R( 7) d7 - 2 [ 7R(7)  d7, (3.4) 

where the limiting value for D(t ,  t )  follows from the fact that the velocities at time t 
are uncorrelated with initial velocities in that limit. Clearly the acceleration 
covariance must approach zero fast than r-2 as 7 +  co in order that the integrals be 
finite. In fact, i t  is anticipated that the covariance vanishes exponentially fast in this 
limit; thus the implications of (3.4) are that 

IOmR(7) d7 = 0 and 7R(7) d7 = -r2 (3.5) Jo* 
are two kinematic constraints which must independently be consistent with the 
expansions that are used to represent R. 

Figure 1 is a sketch of the anticipated behaviour of R for a moderate range of lags, 
including the dissipation range. The acceleration covariance is expected to  be 
positive for small enough lags, but for some range of lags must necessarily be 
negative because of (3.5). Furthermore, the area between the curve and the (lag) 7- 

axis for that portion where the curve is above the axis is the same as the area enclosed 
by the curve and the axis when it  falls below the axis. 
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FIQIJRE 1. Schematic of the acceleration cov_ariance as a function of the lag. The first terms from 
an inner and outer representation, 9, and &‘: respectively, are also shown (see $3.3). Re is taken 
to be 400, ‘is, to be 2 4 2  and a, is an O( 1) numerical factor, here taken to  be 1.1. 

3.2. Inertial-range behaviour 
Following Kolmogorov we consider the behaviour of the various statistical quantities 
for the time-lag regime where t ,  4 7 4 t ,  and suppose that these quantities then only 
depend upon F and 7.  The particular physical relevance is that these are generic 
properties, independent of the details of both small and large scales and describe a 
universal transition between the two extremes. This regime is generally (Monin & 
Yaglom 1975) denoted the ‘inertial subrange’ but for the remainder of this paper 
shall simply be known as the ‘inertial range’. 

The inertial-range results for acceleration, velocity increment and displacement 
covariances are (from dimensional analysis) 

(3.6) 
and 
for t ,  4 7 4 t,, where %?sip), %‘p) and %?g) are dimensionless constants and are supposed 
O( 1) .  In particular %?c) is more usually (Monin & Yaglom 1975, p. 359) written as V0. 
Its value is very uncertain with estimates by Hanna (1981) and Anand & Pope (1985) 
in the range q0 = 4+2. 

It turns out that there is a very simple relationship between %‘p) and %?f), namely 
%‘p) = 3%?P); however, there is an immediate difficulty in relating %‘p) (=  q0) to %??) 
as is evident from (3.2), which cannot be satisfied by the inertial-range forms in (3.6). 
If %‘?) =l 0 then the inconsistency suggests modifying the inertial-range form for 
velocity to either of 

I R(7) X %??) a-1 + 0(7-l), 

0 ( 7 )  X %?p)a+0(7) ,  

a(7) X %?r) 5’ + 0 ( 7 ~ )  

or perhaps a linear combination of these. Note that any such form differs from 
another only by a linear term in 7 whose coefficient depends on Re and, furthermore, 
that (3.3) requires = 2Wa) 0 = q0. Moreover, the linear term does not affect the 
acceleration inertial-range form because it vanishes upon differentiation in (3.3). It 
is essentially the 7log7 term which is consistent with the inverse-7 acceleration 
covariance, but the extra parts of (3.7) are required for dimensional consistency. 
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However, the principles defining the inertial range are violated by (3.7) where it 
is apparent the simultaneous independence of the parameters t ,  and t, is not possible. 
Moreover, the prediction that %?) = $Xo (which is necessarily positive) is inconsistent 
with the behaviour illustrated in figure 1. It is very unlikely that the curve intersects 
the axis twice as would be required by positive %?). Therefore, it must be that 
%?) = 0 which means that the inertial-range accelerations are trivial, asymptotically 
smaller than the dimensional prediction O(i3-l). This fact has been observed by 
Kraichnan ( 1 9 6 6 ~ )  but it is not generally well known. For example Monin & Yaglom 
(1975), equation (21.54) on page 370 propose otherwise. 

3.3 Asymptotic expansions 
The foregoing work illustrates the difficulty with simple dimensional arguments ; it 
is evident that a more elaborate structure, perhaps as afforded by asymptotic 
expansions, is required to provide a self-consistent picture. The goal is to understand 
why the ' inertial-range ' constant for acceleration covariance vanishes and what 
form the acceleration covariance takes. The approach adopted here has some 
parallels with the rational asymptotic analysis of a turbulent boundary layer, as 
given by Mellor (1972) in that inertial-range properties are considered as matching 
properties of small- and large-scale representations. However, while Mellor bases his 
discussion on Eulerian quantities and uses the Navier-Stokes equations we consider 
Lagrangian statistics and only attempt to use the kinematic relations, equations 
(3.5). In our case there is the additional novelty that we do not expect an inertial 
range for the acceleration covariance, which prompts new questions regarding the 
matching interpretation of the inertial range. 

An expansion which describes the behaviour of the dissipation range, i.e. the small 
scales, but not the energy-containing scales (large scales) shall be the inner 
expansion. The acceleration covariance as illustrated in figure 1 can generally be 
represented in the inner region by R = Ct;' W ,  where 

9 -;Re = % o  - +%, - 6,(Re)+%, - &,(Re)+ ... (I, (I,) (I,) (I,) 
and the functions %&) and &(Re) are, in some sense, to be determined. Notice that 
the leading-order term is independent oft, (and therefore Re) and the subsequent 
terms represent Re-dependent corrections. Furthermore, 1 % 6, % 6, % ... and, 
formally, 7 / t ,  is of O(1). 

Similarly, the large-scale properties are described by R = at1& and an outer 
expansion : 

W -;Re ='?lo - +'?ll - 6,(Re)+%, - 6",(Re)+ ..., -(L -(;I -(L)- -(;) (3.9) 

where 1 4 8, % & . . . . In  like manner all quantities have analogous inner and outer 
expansions. In particular we note that the velocity-increment-covariance outer 
expansion corresponds to D = Ft,& with 

&(Re)+$, 

and consequently from (3.3) 

(3.10) 
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We can only postulate what these asymptotic forms may be. For example, for the 
large-7 expansion of the inner acceleration-covariance expansion it is consistent with 
inertial-range hypotheses that 

where T/t,, B 1.  Similarly, for small 7/tL 

(3.12) 

(3.13) 

also leads to the inertial-range form for the acceleration covariance, but in this case 
as a small-7 expansion of the outer expansion. Thus, in the sense of Van Dyke (1975) 
the expansions match; or in Mellor’s sense the mutual overlap of the expansions 
constitutes the inertial range. However, it was indicated above that an inertial range 
for the acceleration covariance led to an inconsistency overall (cf. (3.7)). This 
inconsistency can in fact be shown to correspond t o  a violation of the kinematic 
constraint (3.5) : we write a uniform approximation (for all T )  to R as a composite 
expansion (Van Dyke 1975) 

(3.14) 

Equation (3.14) is valid provided the first term decreases like %p) C7-l as 7 / t r  +. co 
while the second term grows like G$p) c7-l as 7 / t L  + 0 ; therefore in the inertial range 
(matching region) the collective behaviour of the approximation is just R x %p) F7-l. 
Now consider the ramifications of (3.14) in the exact integral constraints (3.5). 
Grouping the last two terms together, it is possible to integrate over the time-lag 
domain [0,7) giving 

x -%p’clog - + q0 + . . . (2 
for large 7 where po  is some O( 1) constant. However, integrating the remaining term 
from (3.14) over the same domain provides a contradiction because 

when T / t ,  is large (for some go), and when combined with the other terms gives the 
approximate result 

after the limit 7+ 00 has been taken. Thus (3.5) can only be satisfied when %p) = 0 
in which case (3.14) is not a uniform approximation to R, failing to represent the 
inertial range, although it is satisfactory elsewhere. In  fact there is no inertial range 
in the sense of Mellor (1972). The variation of the acceleration covariance for t, 4 
7 4 t ,  is actually much more complex and is always a function of both Re and T such 
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that it remains + &-l .  The higher-order terms indicated in both (3.8) and (3.9) play 
a role in the matching region (because the go term cannot match with the leading 
order of the outer expansion -thus gl or subsequent terms must!). Thus the 
composite expansions are necessarily more complicated than (3.14) and will not be 
pursued any further. No useful formula for the inertial-range variation can be 
deduced from the expansions. This is because both expansions are non-uniform and, 
in the worst case possible, infinitely many terms of the same order of magnitude 
constitute the leading-order behaviour. 

3.4. Inertial-range behaviour of velocity and displacement 
Given that %f) vanishes it follows that go is integrable over the entire 7-domain. 
Thus if we substitute (3.8) into (3.2) then at  leading-order in the inner range 

D(7) x .2cCtq (7 - t, 5) go(() dt. (3.15) 

Now suppose 7 %- t,; since the integral of go exists the approximat'ion in the inertial 
range is written as' 

D(7) x 2 a  1: g0(C) dt. 

Either matching with (3.12) or comparison with (3.6) gives the result that 

GQ') = Wo = 2 1: go(C) dt.  

(3.16) 

(3.17) 

Thus a peculiar structure emerges : while there is only a trivial acceleration inertial 
range (= 0) with no parameters describing it, the inertial range for velocity 
fluctuations is non-trivial and is categorized by a non-zero (presumably) universal 
parameter %r). Interestingly, that parameter is entirely prescribed by the inner 
acceleration covariance as represented by the function go. What is remarkable is that 
go effectively only describes the dissipation range and is negligible for 7 %- t,, yet i t  
follows that the dissipation-range covariance collectively determines the velocity 
inertial range through (3.17). The definition of go ensures, however, that q0 as given 
by (3.17) is universal and is independent of both v and t,. This conclusion is similar 
in principle to that of Lin & Reid (1963); however, their result associates V0 less 
clearly with the dissipation-range structure of the acceleration covariance. 

The situation for the velocity covariance is markedly different. It is apparently 
consistent to have the naive leading-order linear term within the inertial range: 

D(7) = %0i3+o(C7) for t, + 7 + t,. (3.18) 

Moreover, in the context of inner and outer expansions the leading-order term in the 
inner expansion tends to V0c7 as 7 / t ,  becomes large while the leading-order outer- 
expansion term also tends to W0c7, but now as 7 / t ,  becomes small. Therefore, the 
asymptotic structure is not non-uniform in the way it was for the acceleration 
covariance. 

Note that there is no equivalent difficulty in consistency, as encountered above, 
when extending the analysis to the displacement covariance. To accomplish this we 
need the two-time velocity increment statistics : specializing to the inertial range, 
these follow from (Monin & Yaglom 1975, p. 533) 

D(t1, t2) = @o E(t(tl+ t2 - It, - t J ) ,  (3.19) 
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which in the one-particle version of (2.17) integrates to give the two-time 
displacement statistics. The leading-order mean-square term within the inertial 
range is (without further assumption) 

F(7)  = +$?0&3+o(C~3) for t, 4 7 4 t,. (3.20) 
Thus Wo is not required (by kinematic consistency at least) to vanish. 

3.5. Large -Re ynolds-number limit 
It is illustrative to consider the formal limit as v+O, i.e. Re+ 00. If 7 is kept fixed 
then for r > 0 

which is now an exact relation. For 7 = 0 though, the limit is undefined because R x 
Ct;' '210(0) + 00. However, because '210(€J is integrable along the real axis for any finite 
v, the acceleration covariance can be interpreted in terms of generalized functions 
(Lighthill 1958) has having a &function at  7 = 0. Thus for 7 2 0 

(3.21) 

is appropriate for infinite-Reynolds-number turbulence. The &function corresponds 
to a white-noise stochastic process suggesting, as is often assumed, that in the large- 
Re limit the Lagrangian velocity can be modelled as a Markov process. Then i@o 

takes the particular form 

To this point only the first of the integrals in (3.5) has been used to check kinematic 
consistency. Analysis using the second integral constraint does not lead to any 
further restriction on the governing constants. There are, however, some interesting 
differences. For example, the exact constraint that 

/ow R(7) d7 = 0 

requires finite contributions from both the inner and outer regions. It is particularly 
illustrative to consider the infinite-Re case. The outer term, for r > 0, gives the 
contribution 

JOm R(6) d t  = [+2;(6)]2 = -&@;(O) = -$X0 + 0 

and the exact result is only retrieved when the additional contribution from the 6- 
function is considered : 

J:Wor3(E)d[ = ++V0. 

Thus contributions from both the inner and outer regions are essential. This fact is 
contrasted by the second exact result from (3.5), with 

1; 7R(7) d7 = - r2 
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being implicitly satisfied by the outer term alone. This follows from integration by 
parts and since $,(a) = 2 (in general). Therefore, the inner region contributes only 
negligible corrections to the exact result. 

4. Two-particle statistics 
4.1. General considerations 

The conventional approach based on dimensional analysis (Monin & Yaglom 1975, 
p. 546; Novikov 1963, 1989) is to argue that because the accelerations are localized 
in space (i.e. the Eulerian acceleration covariance decays rapidly with separation) as 
well as time, the two-particle Lagrangian acceleration covariance is negligible in the 
inertial range, or, equivalently that the relative acceleration is stationary. This 
means, through (2.14), that the pairwise-relative velocity covariance is effectively 
twice the one-particle velocity covariance and so forth. Thus, according to this 
approach, the pairwise-relative statistics are simply related to the one-particle 
statistics and the two-particle statistics are essentially redundant. However, the 
neglect of the two-particle acceleration covariance is an assumption which is not 
rigorously justified. Indeed, deeper examination, which is the endeavour of the 
remainder of this paper, indicates the converse ; the two-particle covariance is as 
important as the one-particle one for significant periods of time. 

The joint dispersion of two particles in a turbulent flow is more complex because 
the acceleration process is not stationary. Thus, from (3.14), R,,,(t,, t , )  depends non- 
trivially upon both t, and t ,  and, in particular, is not just a function of the lag, 7 = 
t , - t , .  (Here and throughout the remaining sections we restrict attention to the dot- 
products of the statistical quantities of the acceleration, velocity etc., e.g. R, = R,,,, 
D,  = D2tt, F, = Fzt,, ... .) Figure 2 shows schematically the form of the covariance. 
The process is not stationary because it ‘remembers ’ the initial particle labelling. 
That is to say, particles that are close initially will be more strongly correlated then 
than after the turbulent flow has dispersed them. In fact, after a sufficiently long 
time has elapsed, say t ,  + t,, the particles will effectively be independent of one 
another even for zero lag ( t ,  = t , ) !  In contrast, if the process were stationary and 
therefore the covariance simply a function of T ,  it would be identical with the initial 
covariance whenever 7 vanishes. 

Evidently a new timescale is important. This scale is a measure of the rate of loss 
of memory of the initial conditions and must depend upon the initial separation, A,. 
Letting A; = A,, A,, ,  we are interested in inertial-range separations 7 4 A ,  < L,  and 
then the appropriate time-scale, to ,  is 

t - A1c-f 
0 -  

Therefore, the domain of interest (the inertial range) involves times such that 

t, 4 t o ,  t,, t, 4 t , .  (4.1) 

Within the time range (4.1) we distinguish two subranges, which for want of better 
terminology we call, following Batchelor (1950), ‘small’ times, such that t, 4 t , ,  t ,  4 
to, and ‘intermediate’ times, such that t, 4 to 4 t,, t ,  4 t,. 

For small times, t,, t, < to, the Taylor series expansion of the two-particle velocity 
structure function gives (from (2.16) modified for cross-statistics) 
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FIQURE 2. Schematic of the scalar product of the two-particle two-time acceleration covariance, 
R, = (all)(tl) ~ ~ ~ ’ ( t , ) ) ,  as a function of the times, t ,  and t,. (The surface was constructed using (6.2) 
with p = g). 

where BiE)(Ao) is the two-point Eulerian acceleration correlation, i.e. 

RiEE’(Ao) = (aA-4 a,@+ do)) 

which is independent of time since the turbulence is stationary. For inertial-range 
separations (Monin & Yaglom 1975, p. 371) 

RiE’(ff,) X Kc(d:/q-i = K q t o  (7 4 do + L )  

where K is a universal constant. Therefore, 

D,(t, t )  = K 8 2 / t 0  + O ( t 2 / t 0 )  (7 4 do 4 L,  t, 4 t 4 t o )  (4.2) 

Initially, therefore, D, is much smaller than the corresponding one-particle structure 
function in the inertial range (cf. (3.18)), a result which is consistent with the usual 
assumption that the contribution of the two-particle acceleration correlations is 
negligible. However, for later times such that t x to, Dz(t ,  t )  x K&, which is of the same 
order as the one-particle function ! Thus although the expansion (4.2) is anticipated 
to break down at this point, it strongly suggests that the two-particle structure 
function increases in importance with time and is comparable with the one-particle 
function within the ‘intermediate’ part of the inertial range, to + t , , t ,  Q t,. As a 
corollary, we expect the two-particle acceleration covariance to be significant there ! 
This argument has been advanced in less formal terms by Thomson (1990). 

4.2. Intermediate-subrange structure 
Our approach here is to deduce the forms of the two-particle statistics for the 
intermediate subrange by simple dimensional analysis and then to show that the 
kinematic constraints do not force a trivial structure on the acceleration covariances 
as in the one-particle case. The reason for this difference is essentially that the two- 
particle acceleration covariance is not subject to the additional constraint of 
stationarity . 
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We construct forms that depend only upon t,,t, and 8. Thus we have for the 
acceleration covariance, the velocity structure function and displacement covariance 
respectively 

and 

(4.3) 

These forms are further restricted by symmetry requirements (R,(t,, t z )  = R2(tz,  t l )  
etc.) so that 

1 9 2 ( E )  = EgdE-') 

922(5) = E - 3 9 2 ( E - 1 )  
g2(E) = (-192((-1) for ( E  (0, a). 

We now examine the consistency of these forms by substituting (4.3) into the two- 
particle kinematic relations corresponding to (2.16). In particular, 

After some algebra, an integration by parts, and using the symmetry properties, the 
kinematic constraint (4.4) reduces to 

5 
9 2 ( 0  = I-'J 0 x - ' ~ ~ ( X ) d X + ~ ~ ' X - ~ ~ ~ ( x ) d X .  0 (4.5) 

It remains to be shown that the integrals in (4.5) are proper for non-trivial @,(x) in 
order that g2([) be well-defined. Note that (4.5) clearly embodies the symmetry 
requirement. 

The potential problem points for (4.5) are the end points of integration, i.e. as 
x + O  or 03, since B2 is smooth and no internal regions of the domain can cause 
integration difficulties. Because of symmetry we need only consider one of these 
cases, x + O .  I n  Appendix A we argue that g2(x) vanishes more rapidly than x as 

lim gZ(x) x- ' -~  = const. (4.6a) 

or, equivalently, lim B2(x) xh = const. (4.6b) 

for some h > 0. With restriction (4.6) on g(x) the integrals in (4.5) are proper and the 
inertial-range forms for acceleration and velocity structure functions are completely 
self-consistent. 

X - f O  

X + O  

X- m 

Note that the constraint (4.6a) on the form of B2(x) ensures that 

Dz(t,, 0) = &(0, t z )  = 0 v t,, t, 
respectively, as in required by definition. We conclude that there is no kinematic 
reason for the two-point acceleration covariance to be trivial in the inertial range. 

As was the case for one-particle inertial-range statistics the displacement and 
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velocity covariances are also completely consistent in the intermediate subrange. 
Thus using (4.3) and integrating as in (2.17) we find 

which is well defined in the same sense as (4.5). 

quantities along the diagonal of the two-time plane, t, = t,. Then we have 
For dispersion, the important results are generally concerned with mean-square 

(ak’)(t) aj2)(t))  = R2(t, t )  x 9,( 1) Z’ 
(ul’)(t) e p ( t ) )  = D2(t, t )  x 2 q  a 

( to  + t Q t L )  ; ( 4 . 8 ~ )  

(4.8b) (to + t Q t,), 
1 

where, from (4.5), Y = I x-’se,(x)dx 
0 

is a universal constant. It also follows from (4.5) that 

and 

Finally, from (4.7) we have 

where 

( @ ( t )  z l 2 ) ( t ) )  = F2(t, t )  x (V1 -$V,) ct3 for to Q t + t,, ( 4 . 8 ~ )  

Y = 1; 9 3 2 ( x )  dX, 

F2(E) x +g2(0) [-’ as [ + O ,  

and Pi([) x -$32(0)t-2 as [ + O .  

These results are non-trivial provided that ‘is, and W2 do not vanish (or cancel in 
(4.8 c)),  details which cannot be verified by simple dimensional analysis. 

An intriguing difference from the analogous one-particle equations, 

D(t,  t )  x 3q08,, F(t ,  t )  x %?oiB,s 

when t, Q t < t,, is that whereas the characteristic constant, V0, is determined 
explicitly by the small-scale dissipation-subrange properties (3.17) of the one- 
particle dynamics, the two-particle Wl is determined explicitly by the larger scale 
inertial-range properties (an integral involving g2). Despite the disparity in 
interpretation of the formally O( 1) constants Vo and W,, it  is particularly important 
to note that both processes lead to equal order-of-magnitude estimates of dispersion 
for times t 9 to. Therefore it is clear that an account of relative dispersion must 
include both processes. 

The correlation coeficients corresponding to (4.8b) and ( 4 . 8 ~ )  are, using the one- 
particle results above, 
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These are thus both constant within the intermediate subrange, showing explicitly 
that the two-particle effects are of the same order as one-particle effects. 

4.3, Further constraints 
We show in Appendix B, that two-point Lagrangian correlations for any quantity 
(e.g. acceleration, velocity etc.) satisfy the inequalities 

and 

(4.11) 

(4.12) 
where p2 is a two-particle correlation coefficient. For acceleration correlations with 
p2 given by R2(t,,  t2 ) / (ao i?/t7) where a, C/t7 is the acceleration variance (see figure l), 
these inequalities in the intermediate subrange require that 

and 

(4.13) 

(4.14) 

Thus a2(l) is not negative and clearly 9t2([) is tangent to $9t2(1) at  6 = 1, i.e. 

which can also be shown to be a consequence of symmetry. 
For velocity difference correlations, D,(t , ,  t , ) / (D(t , )  D(t , ) ) i ,  we have 

0 < gVl/%?o < 1 
and 1 9 2 ( 5 ) 1  < 6-:92(1)> 
with the tangency condition 

again a consequence of symmetry. 
Finally, for displacement correlations, F2(t,,  t 2 ) / ( F ( t l )  F(t , )$ ,  

0 d (%?, - +W2)/W0 < 1, 
l 9 2 ( 6 ) l  < 6-:92(1)9 

and the tangency condition 

(4.15) 

(4.16) 

(4.17) 
(4.18) 

Note that these constraints strengthen the usual Schwarz inequalities, which are 
included in the more restrictive inequalities (4.13), (4.15) and (4.17). However, (4.14), 
(4.16) and (4.18) are apparently entirely new or at least little known. 

It is relatively simple to find a functional form for a2(&J which satisfies all of the 
constraints so far considered: say 

9 2 ( 0  = 01 + t? E2p-, 7 (4.19) 



Small-scale structure of acceleration correlations 311 

- a-19, 8, = &/(I +E,) 
---..--- Absolute bounds for I, 

I 

1 I 

0 
5 

6 3 

:, - a-%, g,:I ,  = &/(I 
. ---_. . . . Absolute bounds for 9, 

0 0 

1 

I 1 
5 

FIGURE 3. Inertial-range forms corresponding to (4.19) with ,u = j; the acceleration covariance is 
appropriate for large tJto and t, /t ,  in figure 2. The absolute bounds for these functions are as 
determined in $4: (4.14), (4.16) and (4.18). 

where a and p are some positive constants with p > 1. In  figure 3 calculated forms 
for g2, g2 and g2, and the respective bounds, are shown for p = i. Note that the 
important dispersion characteristics, Vl and W2, are given by 

a (4.20) 

where p(q) is discussed in Gradshteyn & Ryzhik (1980, p. 947). For the particular case 
of p = 1 it follows that 

(4.21) 
and these numbers will be useful in a subsequent section. 

The point of example (4.19) is that all the constraints so far considered do not 
preclude its existence. In particular, there is no kinematic requirement that the two- 
particle acceleration covariance be trivial in the inertial range as there was in the 
one-particle case. Of course, it is unlikely that the actual acceleration-covariance 
intermediate subrange will correspond to such a simple form as (4.19) though it may 
be that for some values of p and a it constitutes a reasonable approximation of that 

VJa = 0.4875.. . , V2/u = 0.26 605.. . 
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behaviour. Unfortunately, there is no constraint that  positively establishes that the 
acceleration-covariance intermediate subrange must be non-trivial (i.e. a $; 0) but it 
seems only reasonable to suppose that it does exist because of the absence of 
constraints requiring otherwise. 

5. Implications for relative dispersion 
We recover results for relative statistics by combining one- and two-particle forms 

as in (2.15). Thus for small times in the inertial range where two-particle effects are 
negligible (cf. (4.2)), we have 

which, remembering that (5.1) refers to the dot-product of velocity differences, is just 
twice the one-particle result (3.19). However, as we have shown, for intermediate 
times the two-particle terms are significant and we have 

x 3%o~F( t ,+ t , -~ t , - t ,~ }  (t,,t, 4 t o )  (5.1) 

where both terms in (5.2) are formally of the same order of magnitude although they 
have their origins in accelerations on vastly different scales. The particular result for 
mean-square relative velocity differences follows from (5.1) and (5.2) by putting 

(t ,  4 t 4 t o )  
(6VO-4%,)Ct (to $ t + t L ) ,  (5-3) 

t, = t , ,  
(u1')(t)2) x (u?)(t)2) - (u ' " (O)2)  z 

where we have also expressed the relative velocity difference variance in terms of the 
more familiar relative velocity variance. Thus, in the intermediate subrange the 
relative-velocity variance is influenced significantly by two-particle effects and is not 
trivially related to  the one-particle variance (by a factor of two) as concluded by 
Novikov (1963) and Monin & Yaglom (1975). Of course, the exponent in the power 
law is not altered, since simple dimensional analysis prevents such a discrepancy, but 
the coefficients differ. 

Similar conclusions apply for the relative displacements. There will generally be 
two subranges of the inertial range which correspond to the effect's of one- and two- 
particle acceleration correlations. In particular, both of these subranges are 
characterized by cubic growth with t (along the diagonal) with respective coefficients 

The corresponding dimensional forms for the relative dispersion are 

where we have also expressed these results in terms of the part,icle separation, A .  
Again, the coefficients differ but the power-law exponent does not. 

6. Calculations with a Markov model 
Dimensional arguments advanced so far cannot prescribe the form of the functions 
9,((), B2(& and S,(t), nor can they show that the constants %, and %g are non-zero. 
In this section we present evidence to show that %, and %, are non-zero and that 
therefore the function 9,(() is non-trivial. 



Small-scale structure of acceleration correlations 313 
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In (tit‘) 
FIQURE 4. Relative-velocity-increment variance as a function of time. Stochastic model results (A) 
are compared with various parameterizations of the two-particle two-time acceleration covariance : 
-, (6.2) with p = $; -, (6.2) with p = i (upper line) and p = 8 (lower line) ; ---, inertial-range 
form (5.3) for t Q to (upper line) and t & to (lower line). 

An early Markov model of Novikov (1963) for relative dispersion is a direct 
analogue of a one-particle model but with the random initial velocity chosen so that 
the initial (Eulerian) relative-velocity statistics are correct. That is, according to 
Novikov's model, 

which to leading order within the inertial range is 

Dz(t ,  t )  x &/t, (to 4 t -e tL) .  (6.1) 

Comparison with the correct small-time result (4.2) and the new intermediate- time 
results (4.8b), shows that (6.1) is too small by factors of order to/t,  and t / t ,  
respectively, where both to and t 4 t,. Similarly, this model has a two-particle 
acceleration covariance, which being of O(c/tL) is also too small implying that 8, x 
0 even for very small separations. Therefore this model involves an unnecessarily 
restrictive assumption. 

A more recent Markov model (Thomson 1990), which is a more sophisticated 
extension of Novikov's model, can more generally represent the acceleration 
covariance and exhibits non-trivial two-particle dispersion. This can be seen in 
figures 4 and 5 for the mean-square velocity difference and displacements respectively 
where results of a numerical simulation of 2 x lo4 realisations with V0 = 4 and an 
initial separation of d o  = loT4 are given. The model also requires as input the 
Eulerian two-point velocity covariance function, which in the inertial range is of the 
form 

(u,(x)u,(x+do)) x 3a2-yC(cd0)$ (do -e L ) ,  

where C = 1 (Townsend 1976, pp. 96-99). The upper straight dashed line in figures 
4 and 5 shows the small-time behaviour, (5.3) and (5.4) respectively, for t -4 to from 
which the numerical solution departs when t x to. However, the numerical results 
approach a second straight line, the lower dashed line, in what we have termed the 
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In (tit,) 
FIQURE 5. As for figure 4, except that here relative-displacement statistics are shown and the 

dashed line is inertial-range form (5.4). 

intermediate range, which corresponds to the numerical values %‘, = 3.9 and CrgZ = 2.1 
in (5.3) and (5.4). Eventually, for t x t ,  the simulation deviates from this second 
asymptotic regime. 

Thomson’s model implicitly accounts for both the small-time and intermediate- 
time behaviour and for the transition between these two ranges. Here we propose a 
suitable interpolation for the two-particle acceleration covariance which encompasses 
(4.19) and the small-time behaviour 9, x ~ c / t , ,  say 

where (6.2) is chosen to be symmetric about the t, and t, axes and we have chosen 
K x a. (Figure 2 was generated from (6.2) with ,u = I.) We estimate a by a fit to the 
stochastic-model simulation of the intermediate-range mean-square velocity ; i.e. 
(4.21) fits the numerical result x 3.9 with 01 x 8. The mean-square velocity 
corresponding to (6.2) with y = (obtained by integrating (2.16) numerically) is 
shown in figure 4 as the heavy solid line ; it corresponds to the Markov results very 
well. Two other values of the exponent y (with a similar fitting procedure in the 
intermediate range) were also tried and are shown in figure 4, but do not represent 
the transition between the small- and intermediate-time results as well as y = g. Note 
that the inertial-range form (6.2) is not truncated a t  large times, so its intermediate 
range continues indefinitely whereas the stochastic simulations show that for t / t ,  
large the velocity-difference covariance tends to a constant. 

A more searching test of the suitability of (6.2) is to now consider figure 5 and the 
displacement statistics since there are no more adjustable parameters in (6.2). Again 
we find excellent agreement with the Markov results for y = 8, and a less satisfactory 
fit for y = t or 4, from which we conclude that (6.2) captures the essential ingredients 
of the acceleration covariance in the inertial range which are implicit in Thomson’s 
stochastic equations. 

We believe Thomson’s model is a more faithful representation of the physics (at 
least in comparison with Novikov’s model). For example, i t  meets objections raised 
in Novikov (1989) to such particle-trajectory models. However, this model does not 
explicitly ensure that the acceleration covariance, which is apparently not too 
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dissimilar to (6.2), is actually correct. In other words (6.2) may in fact be far from 
the acceleration covariance corresponding to the Navier-Stokes equations. It is clear 
that a future course is to design a model which properly incorporates the acceleration 
covariance. 

There are several predictions in the literature which have some indirect bearing on 
the issue of the importance of the two-particle acceleration covariance. For example, 
Larchevhque & Lesieur (1981) used an EDQNM closure of the equations of motion 
to calculate the coefficient in the relative dispersion t3-law. They obtained a value 
aRi x 3.5 for Richardson’s constant, which in our notation corresponds to 

aRi = 2W0-2W1+~V2 w 3.5. 

Similarly an earlier Lagrangian History Direct Interaction analysis by Kraichnan 
(1966b) yields a value aRi = 2.42. There are difficulties (and consequent incon- 
sistencies) in any attempt to derive one-particle statistics from either of these 
models since the limit A ,  + 0 merely causes the timescale to to vanish thus effectively 
extending the intermediate subrange to arbitrarily small times. However, it is 
possible to derive from Kraichnan’s one-particle displacement statistics a value of 
Vo = 4.67, and supposing a Wo value similarly greater than 2 for the EDQNM model, 
then both results imply that Wl and W2 are non-zero and that Richardson’s constant 
is not trivially related to Wo. 

A more recent attempt by Hunt et al. (1990), to model relative dispersion in 
turbulence, where a kinematic flow field is specified, gives the result aRi x 0.3, which 
is so low as to suggest that in this case the additional two-particle constants Vl 
and W2 contrive to almost cancel with 2V0 in (5.5). For these kinematic simulations, 
Wo = 2.2. 

7. Conclusion 
In this paper we have examined the structure of one- and two-particle Lagrangian 

turbulence statistics, focusing particularly on the inertial subrange in the limit of 
large Reynolds number. Our findings differ from presently accepted results in a 
number of ways. 

For one-particle statistics, we showed that the inertial-subrange form of the 
Lagrangian acceleration covariance derived from dimensional arguments, VFk/r ,  is 
kinematically inconsistent with the corresponding velocity statistics unless VP) = 0. 

One-particle velocity and displacement statistics (in an inertial frame moving with 
the initial velocity of the particle in each realization) are non-trivial in the inertial 
subrange, and the traditional results obtained by dimensional analysis are confirmed 
here. However, through our analysis of asymptotic expansions we have shown that 
the universal constant Vo which characterizes these latter statistics in the inertial 
subrange is entirely prescribed by the leading-order term (in Reynolds number) of 
the inner expansion of the acceleration covariance, i.e. by the dissipation-range 
structure of the acceleration covariance. 

The direct matching of large-scale acceleration structure to that in the dissipation 
range is particularly apparent in the limit of infinite Reynolds number. In that limit, 
we have shown that the outer structure (involving 7 / t L )  is applicable to all non-zero 
lags and the inner or dissipation-range structure is compressed into a &function at  
the r = 0 origin. This is precisely the form for the acceleration covariance which is 
obtained from Langevin models of the motion of marked particles and which are 
currently of great interest. 

I 1  FLM 220 
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In  the two-particle case the acceleration covariance is non-stationary and 
therefore a function of the two times t, and t, rather than the lag ~ t L - t , ~ .  In  addition 
it is a function of the initial separation (through the timescale to )  and the turbulence 
timescales t, and t,. For 7 < A ,  + L,  dissipation-scale effects can be ignored and we 
have focused on a part of the inertial subrange for which to 4 t l , t2  4 t,. There 
dimensional arguments require the acceleration covariance to be of the form 
a;’ B2(tl/tz). In contrast to the one-particle case, there is no kinematic inconsistency 
between this form and the corresponding results for velocity and displacement 
statistics, i.e. there is no constraint causing 9,([) to vanish. 

An important consequence of this non-trivial form for Ye,([) is that two-particle 
corrections to the inertial-subrange structure of the relative velocity and dis- 
placement covariances cannot be ignored. These corrections do not affect the power- 
law dependence of these quantities within the inertial subrange but do alter the 
magnitude of the constant of proportionality. Thus the relative-velocity variance is 
of the form (6W0-4%1) CT, where 

1 

q1 = I ‘PBz(6)dE7 
0 

and the relative dispersion is of the form (2%,-2%‘, + $ ‘ 2 ) ~ ~ 3 ,  where 

These results differ by the two-particle corrections from those previously accepted 
and which result from the assumption that the two-particle acceleration covariance 
can be ignored. They thus destroy the simple correspondence between relative- and 
one-particle statistics traditionally derived from that assumption. There is some 
evidence from other analyses of relative dispersion to show that these constants do 
not vanish. 

I n  general B2(fJ remains undetermined, although some further inequality 
constraints, as outlined in Appendix B, can be placed on it. These do not appear to 
be well known and constrain the form of B2([) so that, in particular, the constants 

and %‘, -&‘ipz are non-negative and consequently the relative dispersion proceeds 
less rapidly than if independence of the particles’ motion is assumed. 

Our analysis has clarified the role of two-particle effects in the process of relative 
dispersion and provides more rigorous support for Thomson’s (1990) empirical 
results with a Lagrangian stochastic model of two-particle motion. We are hopeful 
that our results will aid the design of such models so that they properly model the 
acceleration covariance. 

Appendix A 
The dynamical equations of motion for a fluid are the Navier--Stokes equations, 

and the equation of continuity, 
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The left-hand side of (A 1) is the acceleration of a fluid particle at position x and 
with velocity u due to a pressure gradient and a viscous force. Generally the flow is 
generated by some boundary conditions or forcing. For instance, some forcing that 
does work on the fluid at  the rate cper unit mass. However, for this discussion the 
velocity field is supposed to exist and (A 1 )  will be used to consider the consequent 
accelerations. 

Consider the following exact relationship : 

lorn (ai1)(tl)aiz)(t2)) dt, = - (uil)(0) ay)(tz)), 

where the notation is from the main body of the text. In particular, set t, = 0 so that 
the right-hand side is simply a function of the initial (fixed) separation: A,. 

The correlation between the acceleration of a particle at position x‘ and the 
velocity of a particle at x, where Ix’-xl = lAl % v i d  (=  7, the viscous lengthscale), 
is approximately determined by the two-point pressure-gradient/velocity correlation 
because the high shears are not well correlated over large distances. Therefore 

which defines the tensor 0.  p(xc) ,O) is an Eulerian function of xiz) at time t = 0 
which represents the initial distribution of the pressure field. Provided that Idol 9 7 
the corrections in (A 3) due to the viscous stresses will be negligible. 

0 has special properties: the first due to mass continuity 

and the second due to the curl-free dynamic acceleration, thus 

where eUk = 1 if { i j k }  is a cyclic permutation of {123}, but eilk = 0 if any two indices 
are the same and is otherwise equal to - 1 .  

As a result of these two properties, and the further properties that, firstly, 0 is a 
bounded function of A ,  and, secondly, of isotropy, the tensor 0 is at  most a constant 
function of A,.  However, that constant is necessarily zero because the correlation for 
arbitrarily large separations must be asymptotically small. Therefore the main result 
is that 

~orn(a~1)(t~;x~1))a:l)(O;x~2)))dtl  x O V i , j  = 1,2 ,3 ,  (A 4) 

with corrections being dependent on the viscous terms and therefore Reynolds- 
number dependent, 

Now let (ail)(tl) ai2)(0)) = R,(t,). Thus (A 4) is equivalent to 

~orn120(t)  dt = 0 

which is a direct analogue of the one-particle kinematic relationship (3.5). Therefore 
(with to now playing the role of the inner timescale) it is not possible that R,(t) has 

11-2 
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the naive dimensional behaviour, R,(t) w c/t, for t 9 to in the inertial range. Thus 
R,(t) vanishes faster than inversely with t in the inertial range. Consequently, S?,([) 
as defined in (4.3) behaves like for small ( and some h ( > O ) .  

Appendix B 
Here we consider constraints on various two-particle covaaiances using an 

argument essentially due to Thomson (1990) (appendix B) but with origins based on 
Batchelor (1952). 

We begin with one-time two-particle covariances (such as R,(t, t ) ,  D,(t, t ) ,  F2(t, t )  
etc.). Consider a collection of N marked fluid particles a t  time t (> 0) which at  time 
t = 0 were distributed within a cloud of radius A, ,  where A,, + L.  Now consider an 
ensemble of such situations where in each the particles are dispersed by homogeneous, 
isotropic and stationary turbulence (with energy-containing lengthscale L) .  Now the 
statistics of different pairs are distinguishable only through their initial separations. 
Furthermore, for times such that to = d A i  -g t ,  the statistics of all pairs are 
indistinguishable. 

Consider now the N x N pair correlation matrix, C(t), for an arbitrary quantity (say 
the displacement, velocity or acceleration of each particle). Since all pairs are 
equivalent, C has a determinant of the form 

where, for displacements say, 

and is independent of the particle labelling (i) and (j) .  Since a correlation matrix must 
have a non-negative determinant. 

IC(t)l = (1 -p)N-l(l + ( N -  1 ) p )  2 0. 

O < p < l ,  

(B 2) 
We may take N arbitrarily large, so that we have finally 

which is the main one-time result. 
We now treat two-time two-particle covariances such as R,(t,,  t,), D,(t,, t,), Fz(t, ,  

t,), by considering the analogous problem for 2N particles, N at  time t, and N a t  time 
t, but all, as above, emanating from a cloud initially of radius A,.  Again pair statistics 
are indistinguishable when both t ,  and t ,  are much larger than to .  The correlation 
matrix, Cz(t,, t,), now contains three sorts of off-diagonal elements; one-time 
correlations p’ = p ( t l )  and p” = p(tz) defined as above, and a two-time correlation, 
which, for example, for displacements, is given by 



Small-scale structure of acceleration correlations 

C2 again has a non-negative determinant, 

1 p’ p’ ... P/  ~ P2 P2 P2 * . -  Pz 
p‘ 1 pT ... P/ I P2 P2 Pz . * -  PZ 
P /  P’ 1 : P2 P2 P2 ‘ .+ 

1 P ’ !  : P2 Pz 

. I  

I 

P2 PZ P2 ..* p2 I p” 1 p” ... P” 
P2 P2 P2 . I p” P’’ . 

- *  P2 Pz I : . *  1 p” 
P2 P2 * - *  P2 P2 I P” P” *.. p” 1 
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Expanding the determinant gives 

IC21 = ( 1  - p ’ ) N - ’ ( l - p ” ) N - ’ ( l - ( r n -  l )p ’p”+  ( N -  1 )  ( p ’ + p ” ) + P ( p ’ p ” - p ; ) ) .  

P ( t J  P(t2) 2 P%> t2) V t l ,  t 2  

Hence non-negativity (for arbitrarily large N) requires 

(B 3) 

since we already have 0 < p ( t l ) ,  p(t2) < 1.  
Equation (B 3) is the main two-time result. 
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